

Parton Distributions from HERA

Voica A. Radescu

(Physikalisches Institut Heidelberg)

<u>Outline:</u>

- HI and ZEUS at the HERA collider
- Data Combination
- QCD Analysis
- Results and Comparisons
- Summary

HERA at DESY

H1

- HERA is world's only e[±]p collider
 - Iocated at DESY, Hamburg Germany
 - In operation for 15 years (1992-2007)
 - HI and ZEUS collider experiments

ZEUS

HI and ZEUS kinematics

HI and ZEUS kinematics span over 6 orders of magnitude in x and Q²!

PDF determination at HERA

• General double differential cross section:

$$\frac{\mathrm{d}^2 \sigma_{NC}^{\pm}}{\mathrm{d}x \,\mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L \right] \equiv \frac{2\pi\alpha^2}{xQ^4} Y_+ \tilde{\sigma}_{NC}^{\pm}$$
$$Y_{\pm} = 1 \pm (1-y)^2$$

- F₂, F_L and xF₃ are the structure functions which are related to the momentum distributions of quarks and gluon inside the nucleon.
- At Leading Order: $F_{2} x \sum e^{2} \left(q(x) + \bar{q}(x) \right)$

$$F_2 = x \sum_{q} e_q^2 (q(x) + \bar{q}(x))$$

$$xF_3 = x \sum_{q} 2e_q a_q (q(x) - \bar{q}(x))$$
• F₂ dominates
• sensitive to all quarks
• xF₃
• sensitive to valence quarks
• F_L
• sensitive to gluons

• Also, HERA CC data give flavour information

$$\begin{array}{ll} \sigma^{CC}_{e^+p} & \sim x(\bar{u}+\bar{c})+x(1-y)^2(d+s) & \twoheadrightarrow \mbox{Sensitive to } {\rm d}_{\rm v} \mbox{ at high x} \\ \sigma^{CC}_{e^-p} & \sim x(u+c)+x(1-y)^2(\bar{d}+\bar{s}) & \twoheadrightarrow \mbox{Sensitive to } {\rm u}_{\rm v} \mbox{ at high x} \end{array}$$

Jefferson Lab Combination of the HI and ZEUS Measurements

[JHEP01 (2010) 109]

- Ultimate precision is obtained by combining the HI and ZEUS measurements
- The combination procedure is performed before QCD analysis using χ^2 minimisation
 - > Improvement on Statistical precision:
 - HI and ZEUS collected similar amounts of physics data.
 - > Improvement of Systematic precision:
 - HI and ZEUS are different detectors and use different analysis techniques;
 - The HI and ZEUS cross sections have different sensitivities to similar sources of correlated systematic uncertainty.

Results of Combining HI and ZEUS Data

[JHEP01 (2010) 109]

QCD Analysis Framework

- Data Sets:
 - HERA I combined data [JHEP01 (2010) 109]
 - v NC e⁻, CC e⁻, CC e⁺ (Q²>100 GeV²)
 - v NC e⁺ (Q²>0.045 GeV²)
 - Combined HERA I+high Q² HERA II data [prelim.]

- QCD Fit settings:
 - NLO (and NNLO) DGLAP evolution equations
 - RT-VFNS (as for MSTW08)
 - v Other schemes were investigated as well: RT (optimal), ACOT (full and χ), FFNS
 - PDF parametrised at the starting scale Q₀²:

 $xg, xu_{val}, xd_{val}, x\bar{U} = x\bar{u}(+x\bar{c}), x\bar{D} = x\bar{d} + x\bar{s}(+x\bar{b})$

 $xf(x, Q_O^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$

- Apply fermion and momentum sum rules
- The optimum number of parameters chosen by saturation of the χ^2
 - central fit with 10 free parameters
 - χ²/dof=574/582

Scheme	TRVFNS
Evolution	QCDNUM17.02
Order	NLO
Q_0^2	$1.9 \ { m GeV^2}$
$f_s = s/D$	0.31
Renorm. scale	Q^2
Factor. scale	Q^2
Q_{min}^2	$3.5 \ { m GeV^2}$
$lpha_S(M_Z)$	0.1176
M_c	$1.4 { m GeV}$
M_b	$4.75~{ m GeV}$

QCD Analysis Framework

Data Sets: •

- HERA I combined data [JHEP01 (2010) 109]
 - v NC e⁻, CC e⁻, CC e⁺ (Q²>100 GeV²)
 - v NC e⁺ (Q²>0.045 GeV²)
- Combined HERA I+high Q² HERA II data [prelim.]

QCD Fit settings:

- NLO (and NNLO) DGLAP evolution equations QCDNUM package [M. Botje]
- RT-VFNS (as for MSTW08)
 - Other schemes were investigated as well: ∇ RT (optimal), ACOT (full and χ), FFNS
- PDF parametrised at the starting scale Q_0^2 :

 $xg, xu_{val}, xd_{val}, x\bar{U} = x\bar{u}(+x\bar{c}), x\bar{D} = x\bar{d} + x\bar{s}(+x\bar{b})$

 $x f(x, Q_{O}^{2}) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$

- Apply fermion and momentum sum rules
- The optimum number of parameters chosen by saturation of the χ^2
 - central fit with 10 free parameters
 - $\chi^2/dof = 574/582$

→HERAPDF1.5

TRVFNS				
QCDNUM17.02				
NLO				
$1.9 \ { m GeV^2}$				
0.31				
Q^2				
Q^2				
$3.5 \ { m GeV^2}$				
0.1176				
$1.4 {\rm GeV}$				
$4.75~{ m GeV}$				

Sources of PDF uncertainties at HERA

- Experimental Uncertainties:
 - Consistent data sets \rightarrow use $\Delta \chi^2 = I$
- Model Uncertainties:
 - following variations have been considered

Variation	Standard Value	Lower Limit	Upper Limit
f_s	0.31	0.23	0.38
m_c [GeV]	1.4	1.35	1.65
m_b [GeV]	4.75	4.3	5.0
Q^2_{min} [GeV ²]	3.5	2.5	5.0

• Parametrisation Uncertainties:

- An envelope formed from PDF fits using other variants of parametrisation form at the starting scale (especially sensitive to the higher x region):
 - v Scanning of II parameter space
 - ∇Q_0^2 variation and a more flexible gluon parametrisation

HERAPDFI.0 at NLO

 $xg, xu_v, xd_v, xS (xS=xU+xD)$

- Observe valence like shape of the gluon at the starting scale.
- Parametrisation uncertainty dominates.
- HERAPDFI.0 set available in LHAPDF since v5.8.1 (Dec 2009)

HERAPDFI.0 vs NC DIS Data

- Data points include experimental errors
- Fit line includes total error
- HERA data extends to x=0.65 for Q²>500 GeV², clean high x probe at high W
- HERAPDF1.0 fit describes HERA data well
- Extrapolation of the HERAPDF1.0 fit agrees well with fixed target data
 - o (SLAC and BCDMS)!

H1 and ZEUS

HERAPDFI.0 vs Tevatron Data

- Predictions for high- E_T jet cross-sections with full uncertainties compared to the D0 data
- DIS data from HERA predicts Tevatron jets production from ppbar process.
 - Z and W at Tevatron are well predicted by HERAPDFI.0
- Hence, there is a universal description of partonic processes and all can be described with: HERA input, SM couplings and pQCD evolution!

0

HERAPDFI.0 vs Tevatron Data

• Hence, there is a universal description of partonic processes and all can be described with: HERA input, SM couplings and pQCD evolution!

LHC predictions based on HERAPDFI.0

HERAPDF fits at NNLO

- Fits performed to HERA I data (as used for HERAPDF1.0) at NNLO using RT-VFNS:
 - $\alpha_{s}(Mz)$ at NNLO = 0.1176 and $\alpha_{s}(Mz)$ at NNLO = 0.1145

- Using the same settings as for HERAPDFI.0 NNLO fit does not improve fit results.
- Lhapdf grid files available at:
 - https://www.desy.de/hlzeus/combined_results/index.php?do=proton_structure

Combining HERA I and II Inclusive data

- New HERA II preliminary data available! ۲
 - More precise measurements in the high Q^2 and high x regions (especially NC e⁻p and CC e[±]p)
 - \rightarrow could constrain better PDFs at high x
- HERA I and HERA II are combined using same averaging procedure as described before: ۲
 - 674 unique cross sections points with 134 sources of systematic uncertainties

Fits to New Combined HERA data: HERAPDF1.5

- Propagate new data through QCD fit analysis to produce a new set of HERAPDFs: HERAPDF1.5
 - For preliminary studies use same settings as for HERAPDF1.0
 - Parametrisation uncertainty will be further investigated for final release.

HERAPDFI.5 vs HERAPDFI.0

• xg, xu_v, xd_v, xS (xS=x \overline{U} +x \overline{D}) at the scale Q₀²=10 GeV²

- Inclusion of the HERA II data reduces the uncertainties on PDFs in the high x region especially visible on the valence distributions!
 - See HERAPDF1.5(prel) vs HERAPDF1.0

HERAPDFI.5 vs HERAPDFI.0

• xg, xu_v, xd_v, xS (xS=x \overline{U} +x \overline{D}) at the scale Q₀²=10 GeV²

- Inclusion of the HERA II data reduces the uncertainties on PDFs in the high x region especially visible on the valence distributions!
 - See HERAPDF1.5(prel) vs HERAPDF1.0

Impact on the LHC

- HERAPDFI.0 is high at the large scale because sea is hard at high x.
- HERAPDFI.5 has a softer sea.

HiX 2010, ILAB October 2010

Comparison to Tevatron W asymmetry

• HERAPDFI.5 results in a better agreement than HERAPDFI.0 with the CDF data for the W asymmetry, even if this data is not included in the HERA fits.

Comparison to Tevatron W asymmetry

• HERAPDFI.5 compared to Global PDF sets

D0 Lepton Asymmetry

- HERAPDFI.5 provides a reasonable agreement even with the D0 lepton asymmetry, for which the global fits have difficulties.
 - HERA ep data do not require assumptions on isospin symmetry and heavy target corrections

Jefferson Lab

- HERA provides accurate determination of the proton structure and can predict related Standard Model processes:
 - HERA ep data do not require assumptions on isospin symmetry and heavy target corrections
- New preliminary measurements from HERA II included in the QCD Analysis
 - Precise new measurements at high Q² with constraining power in the high x region <u>HERAPDFI.5 [prelim]</u>
 - Provides more precise predictions for LHC than HERAPDFI.0
 - Provides good predictions for the W and lepton asymmetries measured at Tevatron
 - v LHAPDF grid files for HERAPDF1.5 with the full uncertainties can be found at:

https://www.desy.de/h1zeus/combined_results/index.php?do=proton_structure

HERAPDF including Low Energy data

xf

• Preliminary HERA Combined Low Energy data available!

 New accurate measurement in Q²>2.5 GeV² range, sensitive to structure function F_L are included in the QCD analysis on top of the HERA I data→

 PDFs from the new fit agree very well with HERAPDF1.0

Data sets	HERAPDFI.0	+ Low Energy data
Total χ^2 /dof	574/582	818/806

HERAPDF including Low Energy data

- Preliminary HERA Combined Low Energy data available!
- New accurate measurement in Q²>2.5 GeV² range, sensitive to structure function F_L are included in the QCD analysis on top of the HERA I data→

- However, The $Q^2 \ge 5 \text{ GeV}^2$ cut brings large improvement in χ^2 [818/806 \rightarrow 698/771] and it yields different shapes for gluon and sea PDFs.
 - for HERAPDF1.0, Q² cut variation is included in the model uncertainty, but it had smaller effect.

The lines are F_L predictions using combined HERA I and low energy data.

Low Q² region remains very interesting for further QCD tests!

Jefferson Lab

HERA F_L data vs F_L predictions

The lines are F_L predictions using combined HERA I and low energy data.

Various Heavy Flavour schemes: best ACOT(full) and FFNS

More on PDF parametrisation at HERA

- PDFs that are parametrised at a starting scale $Q_0^2=1.9$ GeV² (below M_c²) are: $xg, xu_v, xd_v, x\bar{U} = x\bar{u}, x\bar{D} = x\bar{d} + x\bar{s}$
- A standard functional parametrisation form is used:

 $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$

- It describes the shape of PDFs with few input parameters
 - The number of parameters are chosen by saturation of the χ²
- The parametrisation for the best fit (central fit):

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}}, \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

- The number of free parameters is reduced by the physics constraints such as:
 - normalisation parameters Ag, Auv, Adv by the quark number and momentum sum-rules
 - B parameters so that there is one for sea and another one for valence distributions
 - Ensure that $x\bar{u} \to x\bar{d}$ as $x \to 0$.
- The best fit results in 10 free parameters